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Solution

a)

The forces on the particle on the left are −kx1 and −κ(x1−x2). The forces acting on the particle on the right
are −kx2 and −κ(x2 − x1). Using Newton’s second law, one can get

mẍ1 = −(k + κ)x1 + κx2,

mẍ2 = κx1 − (k + κ)x2,

which can be arranged into the form of

ẍ = − 1

m
Kx (14)

where x = (x1, x2)T , and K =

(
k + κ −κ
−κ k + κ

)
.

b)

Let x = Ceiωt, where C is a column vector, be a solution to Eqn. 14. One gets

−ω2Ceiωt = − 1

m
KCeiωt

or, equivalently
1

m
KC = ω2C,

meaning that C is an eigenvector of 1
mK with eigenvalue ω2. One could find the eigenvalues and eigenvectors

of 1
mK without too much effort to be

ω2
s =

k

m
,Cs = (1, 1)T , and

ω2
d =

k + 2κ

m
,Cd = (1,−1)T ,

where “s” and “d” stand for sum and difference normal modes.
For κ� k, ωs remains unchanged and ωd ≈ ωs(1 + κ

k ).

(A) (B)

Figure 7: (A) Sum and B difference normal mode of the coupled oscillators.
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c)

The general solution to Eqn. 14 is
x(t) = A1Cse

iωst +A2Cde
iωdt.

At t = 0, x(0) = (A, 0)T = A1Cs +A2Cd, giving A1 = A2 = A and

x1(t) = A(cosωst+ cosωdt) = 2A cos

(
ωs + ωd

2
t

)
cos

(
ωd − ωs

2
t

)
≈ 2A cos(ωst) cos

(
ωsκt

2k

)

x2(t) = A(cosωst− cosωdt) = 2A sin

(
ωs + ωd

2
t

)
sin

(
ωd − ωs

2
t

)
≈ 2A sin(ωst) sin

(
ωsκt

2k

)
Since κ � k, the second terms in x1 and x2 oscillate much slower than the first term and can be treated
as part of the amplitudes of x1 and x2. One can see that the energy is hoping between oscillators as their
amplitudes oscillate. Note: the plots are just for demonstration. The students are not required to provide any

Figure 8: Energy hoping between the oscillators. Here Ω = ωs and ε = ωsκ
2k .

of these plots.

d)

Using the equations of motion in part (a) and changing k to k1 and k2 accordingly, you should get the answer:

ẍ1 + ω2
1x1 = ω2

cx2

ẍ2 + ω2
2x2 = ω2

cx1

where ω2
1 = (k1 + κ)/m ≈ k1/m, ω2

2 = (k2 + κ)/m ≈ k2/m, and ω2
c = κ/m for κ� k1, k2.
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e)

The first equation in part (d) becomes:

Ä+ 2iω1Ȧ− ω2
1A+ ω2

1A =

√
ω1

ω2
ω2
cBe

i(ω2−ω1)t.

Under the slow-varying amplitude assumption, one can drop the Ä term. The final equation reads

iȦ =
Ω

2
eiδtB.

By going through the same process for x2, one get

iḂ =
Ω

2
e−iδtA,

which can be combined with the equation above to give the answer in matrix form.

f)

By substituting A = aei
δ
2 t and B = be−i

δ
2 t into the matrix equation in part (e), one get

i

(
ȧ+ i δ2
ḃ− i δ2

)
=

(
0 Ω

2
Ω
2 0

)(
a
b

)
,

or equivalently,

i
∂

∂t

(
a
b

)
=

(
δ
2

Ω
2

Ω
2

−δ
2

)(
a
b

)
=

[
δ

2

(
1 0
0 −1

)
+

Ω

2

(
0 1
1 0

)](
a
b

)
= H

(
a
b

)
.

g)

The eigenvalues and eigenvectors of

(
δ
2

Ω
2

Ω
2

−δ
2

)
are

λ± = ±1

2

√
Ω2 + δ2 = ±1

2
Ω′, and

N± =
1√
2

 √
1± δ

Ω′

±
√

1∓ δ
Ω′


By letting δ√

δ2+Ω2
= cos θ, one get

N+ =

(
cos θ2
sin θ

2

)
; N− =

(
sin θ

2

− cos θ2

)
.

By going back, step by step, one get(
a(t)
b(t)

)
= N0+e

−iΩ′
2 t

(
cos θ2
sin θ

2

)
+N0−e

iΩ′
2 t

(
sin θ

2

− cos θ2

)
;

(
A(t)
B(t)

)
= N0+e

−iΩ′
2 t

(
ei
δ
2 t cos θ2

e−i
δ
2 t sin θ

2

)
+N0−e

iΩ′
2 t

(
ei
δ
2 t sin θ

2

−e−i δ2 t cos θ2

)
.

Finally,

x(t) =
1
√
ω1
Re

{
N0+e

i(ω̄−Ω′
2 )t cos

θ

2
+N0−e

i(ω̄+ Ω′
2 )t sin

θ

2

}
,
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y(t) =
1
√
ω2
Re

{
N0+e

i(ω̄−Ω′
2 )t sin

θ

2
−N0−e

i(ω̄+ Ω′
2 )t cos

θ

2

}
.

For δ � −Ω,

N+ ≈
(

0
1

)
; N− ≈

(
1
0

)
,

meaning the N+ mode majorly consists of x2 oscillation and the mode N− mode majorly consists of x1

oscillation.
Similarly, for δ � Ω,

N+ ≈
(

1
0

)
; N− ≈

(
0
−1

)
,

meaning the N+ mode majorly consists of x1 oscillation and the mode N− mode majorly consists of x2

oscillation.
By starting the oscillation in the left most spring with ω1 � ω2, the system is in the N− mode. Then, by

slowly increasing ω1, the mode of the system remains unchanged until ω2 � ω1 which majorly consists of x2

oscillation. At the end, only the right spring would be oscillating.
Comment: This phenomenon is being used in atomic state transfer and is called adiabatic transfer. Given

an atom with ground state |g〉 and excited state |e〉 and energy difference E. The transfer process starts by
shining a laser beam with frequency ω � E/~ at the atom in |g〉. Then, the laser frequency is slowly ramped
up until ω � E/~, leaving the atom in |e〉. To bring the atom from |e〉 to |g〉, one can also ramp the laser
frequency in a similar fashion (slowly increase the frequency from ω � E/~ to ω � E/~) or an opposite fashion
(slowly decrease the frequency from ω � E/~ to ω � E/~). The success of state transfer |g〉 → |e〉 is given

by the Landau-Zener theory: Pe = 1 − exp
(
−π2

Ω2

(dδ/dt)

)
, meaning the slower one ramp the laser frequency,

the higher probability that the atom would be in |e〉. If you are wondering what is the counterpart of the
oscillators in this atom + laser system, it is the |g + laser field〉 and the |e+ laser field losing one photon〉.

Page 18 of 27



PLANCKS Singapore 2021

Solution

a) Amplitude modulation

The electric field after passing through the amplitude modulating device is:

EAM/E0 = cos(ωt)(̇0.75 + 0.25 cos(ωmt)) = 0.75 cos(ωt) + 0.25 cos(ωt)cos(ωmt)

= 0.75 cos(ωt) +
1

8
(cos((ω + ωm)t) + cos((ω − ωm)t))

The photodetector signal is

I = αE2
0(0.75 cos(ωt) +

1

8
(cos((ω + ωm)t) + cos((ω − ωm)t)))2

= αE2
0(

3

16
cos(ωt) cos((ω + ωm)t) +

3

16
cos(ωt) cos((ω − ωm)t) +

1

16
cos((ω + ωm)t) cos((ω − ωm)t))

= αE2
0(

3

16
cos(ωmt) +

1

32
cos(2ωmt)).

where we ignore all the oscillations at high frequency. One can see that the photodetector can pick up the
modulation frequency and its second harmonic applied via the optical element.

b) Phase and frequency modulation (PM/FM)

The instantaneous angular frequency is defined by

ωinstant =
d

dt
phase =

d

dt
(ωt+ β cos(ωmt)) = ω − βωm sin(ωmt)

By rewriting the phase-modulated field, one obtains

EPM = E0Re {exp(iωt+ iβ cos(ωmt))}

= E0Re

{
exp(iωt) exp

(
iβ

2

(
eiωmt + e−iωmt

))}
= E0Re

{
exp(iωt) exp

(
β

2

(
ieiωmt − 1

ieiωmt

))}
= E0Re

{
exp(iωt)

∞∑
n=−∞

Jn(β)(ieiωmt)n

}

= E0

∞∑
n=−∞

Jn(β)Re
{

exp(iωt)(ein(ωmt+π/2))
}

= E0

∞∑
n=−∞

Jn(β)Re {exp(i(ω + nωm)t+ inπ/2))}

= E0

∞∑
n=−∞

Jn(β)cos((ω + nωm)t+ nπ/2)

For β � 1, Jn(β) ∝ βn. Also, note that Jn(β) is real for β real. Therefore, to first order in β,

EPM ≈ E0(J0(β) cos(ωt) + J1(β) cos((ω + ωm)t+ π/2) + J−1(β) cos((ω − ωm)t− π/2))

= E0(J0(β) cosωt− J1(β)(sin(ω + ωm)t+ sin(ω − ωm)t))

Using J0(β) ≈ 1 +O(β2); J1(β) ≈ β/2 +O(β3), one get

EPM ≈ E0(cosωt)− E0β

2
(sin(ω + ωm)t+ sin(ω − ωm)t)
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One can see that there are three components with frequencies ω, ω − ωm, and ω + ωm, which is the same as
the AM case. However, notice the different in sign of the later two components.

The photodetector signal is

I = α|E|2

= αE2
0

(
cosωt− β

2
(sin(ω + ωm)t+ sin(ω − ωm)t)

)2

= αE2
0

(
−β cosωt sin(ω + ωm)t− β cosωt sin(ω − ωm)t+O(β2)

)
= αE2

0

(
−β

2
(sin(2ω + ωm)t+ sinωmt)−

β

2
(sin(2ω − ωm)t− sinωmt) +O(β2)

)
= αE2

0O(β2),

which only consists of higher order of β and ωm. Therefore, one cannot observe the modulation frequency
from the photodetector signal but its higher harmonics.

c) Optical cavities

The reflected field phasor is given by

Er
Ei

=

[
1− 1

1− i δ
κ/2

]

=

1−
1 + i δ

κ/2

1 +
(

δ
κ/2

)2


=

1− 1

1 +
(

δ
κ/2

)2

− i
 δ

κ/2

1 +
(

δ
κ/2

)2

 (15)

Let’s plot the real and imaginary part of Er

A) B)

Figure 9: (A) The real part and (B) the imaginary part of the reflected field Er.

One can see that the real part of Er is non-zero when δ 6= 0 but it offers no information about whether
δ > 0 or δ < 0. The imaginary part of Er, on the other hand, not only show if the detuning is non-zero but
also the sign of the detuning. Therefore, if we can extract the imaginary part of the reflected beam, we can
use a feed-back loop to stabilize the frequency of the laser beam to the resonance frequency of the cavity.
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d) Optical cavities and amplitude-modulated incident field

The amplitude-modulated field from part (A) is

EAM/E0 = Re

{
0.75eiωt +

1

8
(e(ω+ωm)t + e(ω−ωm)t)

}
Upon reflection from the cavity, the sidebands are unaffected because they are very far away from the

resonance range of the cavity, |δ ± ωm| � κ. The reflected field is given by

EAMr

E0
= Re

0.75eiωt

1− 1

1 +
(

δ
κ/2

)2 − i
δ
κ/2

1 +
(

δ
κ/2

)2

+
1

8
(ei(ω+ωm)t + ei(ω−ωm)t)


= 0.75 cos(ωt)

(
δ
κ/2

)2

1 +
(

δ
κ/2

)2 + 0.75 sin(ωt)

δ
κ/2

1 +
(

δ
κ/2

)2 +
1

8
(cos((ω + ωm)t) + cos((ω − ωm)t))

The photodetector signal of the reflected field is

I

αE2
0

=
3

16

(
δ
κ/2

)2

1 +
(

δ
κ/2

)2 (cos(ωt) cos((ω + ωm)t) + cos(ωt) cos((ω − ωm)t))

+
3

16

δ
κ/2

1 +
(

δ
κ/2

)2 (sin(ωt) cos((ω + ωm)t) + sin(ωt) cos((ω − ωm)t))

=
3

16

(
δ
κ/2

)2

1 +
(

δ
κ/2

)2 (cos(ωmt)) +
3

32

δ
κ/2

1 +
(

δ
κ/2

)2 (− sin(ωmt) + sin(ωmt))

=
3

16

(
δ
κ/2

)2

1 +
(

δ
κ/2

)2 (cos(ωmt)).

Here, we only keep terms that are slow enough for the photodetector to pick up. The photodetector signal
has a component at ωm of which the amplitude is proportional to the real part of Er in part (C). Therefore,
we cannot use this signal to lock the laser frequency to the cavity resonance frequency.

e) Optical cavities and phase-modulated incident field

The phase-modulated field from part (B) is

EPM/E0 ≈ Re
{
eiωt +

iβ

2

(
ei(ω+ωm)t + ei(ω−ωm)t

)}
Upon reflection from the cavity, the sidebands are unaffected because they are very far away from the

resonance range of the cavity, |δ ± ωm| � κ. The reflected field is given by

EPMr

E0
= Re

eiωt
1− 1

1 +
(

δ
κ/2

)2 − i
δ
κ/2

1 +
(

δ
κ/2

)2

+
iβ

2
(ei(ω+ωm)t + ei(ω−ωm)t)


= cos(ωt)

(
δ
κ/2

)2

1 +
(

δ
κ/2

)2 + sin(ωt)

δ
κ/2

1 +
(

δ
κ/2

)2 −
β

2
(sin((ω + ωm)t) + sin((ω − ωm)t))

Page 23 of 27



PLANCKS Singapore 2021

The photodetector signal of the reflected field is

I

αE2
0

= −β cos(ωt)

(
δ
κ/2

)2

1 +
(

δ
κ/2

)2 (sin((ω + ωm)t) + sin((ω − ωm)t))

− β sin(ωt)

δ
κ/2

1 +
(

δ
κ/2

)2 (sin((ω + ωm)t) + sin((ω − ωm)t))

= −β
2

(
δ
κ/2

)2

1 +
(

δ
κ/2

)2 (sinωmt− sinωmt)−
β

2

δ
κ/2

1 +
(

δ
κ/2

)2 (cosωmt+ cosωmt)

= −β
δ
κ/2

1 +
(

δ
κ/2

)2 cosωmt

Here, we neglect all terms that are too fast for the photodetector to pick up. The photodetector signal has
only one component at ωm and that this component is proportional to the imaginary part of Er in part (C).
Therefore, we can use this signal to lock the laser frequency to the cavity resonance.

Comment: To lock the laser frequency, the photodetector signal is then mixed with the signal from the
local oscillator that drives the phase-modulating crystal using a mixer. The mixer is an object that takes in
two voltages (at the local oscillator LO and input RF ports) and multiplies them to produce a voltage signal
out of an output port:

Vmixed = VLO × VRF /V0,

with V0 is a scale factor associated with the mixer, the photodetector signal is sent to the RF-port, and
LO-port is supplied with the voltage

VLO = V0 cos(ωmt+ φ).

After that, the mixed signal is sent through a low-pass filter to get rid of the oscillating terms of frequencies
of multiples of ωm. The constant voltage at the output is

Vout = −β
2

δ
κ/2

1 +
(

δ
κ/2

)2 cosφ,

which can be maximized by shifting the phase of the LO-input signal. The mixer, low-pass filter, and phase
shifter are all included in a locking amplifier box commercially available everywhere. The laser is locked to
Vout = 0 using a proportional-integral-derivative (PID) controller that takes in Vout and send out signals to
frequency stabilizing elements of the laser system to stabilize the laser frequency. This whole scheme is called
the Pound-Drever-Hall technique discovered by Jan Hall in 1983 when Drever was visiting JILA at CU Boulder
and has been used in major experiment, like LIGO, to stabilize lasers.

One more thing worthy of note is that the phase-modulating crystal often provides unwanted amplitude
modulation on top of the phase modulation. This amplitude modulation changes with pressure on the elec-
trodes clamping the crystal, temperature, and humidity. From part (D) and (E), you can see that the Vout
will be shifted around, making locking at Vout = 0 does not correspond to δ = 0 and inducing noise to the
laser frequency.
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