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Casimir effect

It has been experimentally verified that two uncharged parallel conducting plates placed
very close to one another (at separation of order µm) experiences an attractive force in
vacuum. This result is a bona fide prediction of quantum field theory (QFT), as it cannot
be explained classically or by non-relativistic quantum mechanics.

Remark: in this question no prior knowledge of QFT is assumed1. Throughout this
question we will use units c = ~ = 1, as a PLANCKS member should.

(a) Consider a classical massless scalar field in (1+1)-dimensional spacetime φ(t, x), sub-
ject to Dirichlet boundary condition

φ(t, x = 0) = φ(t, x = L) = 0 . (1)

Show that if this field satisfies the wave equation(
− ∂2

∂t2
+

∂2

∂x2

)
φ(t, x) = 0 , (2)

the general solution can be written in the form of

φ(t, x) =

∞∑
n=−∞

(
αnun(t, x) + βnu

∗
n(t, x)

)
, (3)

1This can be taken to be an algorithmic way to do simple QFT calculation. For more details, please
consult a QFT textbook after the test, e.g. by Blundell/Peskin/Weinberg/Ryder/Srednicki.
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where un(t, x) = Ne−iωnt sinωnx and N is some normalization constant that does
not depend on n, and show that for real scalar field, βn = α∗n.

Solution: This is standard method to find the solution to wave equation using
Fourier series. Since plane waves satisfy the wave equations, the general solutions
are given by

φ(t, x) =
∞∑

n=−∞

(
αne

−i|ωn|t+iωnx + βne
−i|ωn|t+iωnx

)
(4)

Imposing the boundary condition, we obtain the solution with ωn = nπ/L. Note
that for real scalar field, βn = α∗n since for every n, each term will be of the form
2Re(αnun(t, x)).

(b) The Klein-Gordon inner product is given by

(f, g) := −i
∫ L

0
dx

(
f
∂g∗

∂t
− ∂f

∂t
g∗
)
, (5)

find the normalization constant N using the orthonormality of the basis functions
(um, un) = δm,n.

Solution: Using the inner product, we get

1 = 2N2|ωn|
L

2
. (6)

Therefore we get

N =
1√
Lωn

=
1√
nπ

. (7)

(c) We obtain a quantized scalar field by promoting αn to an annihilation operator ân,

and α∗n to a creation operator â†n. In this sense, a quantum field is effectively an
infinitely many coupled harmonic oscillators in real space (or uncoupled harmonic
oscillators in momentum space).

The Hamiltonian of the scalar field can therefore be written as the sum of all oscillator
Hamiltonians

Ĥ =
∞∑
n=1

ωn

(
â†nân +

1

2

)
. (8)
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Consider the vacuum state of the field |0〉, defined to be the state that is annihilated
by all ân, i.e. ân |0〉 = 0 for all positive integers n. Show that the vacuum energy
expectation value per unit length is given by

E0(L) =
π

2L2

∞∑
n=1

n . (9)

Is this answer problematic?

Solution: The vacuum expectation value is simply

〈0|Ĥ|0〉 =
∞∑
n=1

ωn

(
〈0|â†nân|0〉+

1

2

)
=

π

2L

∞∑
n=1

n , (10)

and hence the vacuum density is simply E0 = 1
L 〈0|Ĥ|0〉. This is problematic

because this sum is formally (naively) divergent. This has to do with the (infinite)
zero-point energy of free Minkowski space, since the spacetime is infinite in extent
(hence infinitely many oscillators contributing their zero point energy).

(d) Consider the regularized2 vacuum density defined to be

E0(L, ε) :=
π

2L2

∞∑
n=1

ne−
εn
L . (11)

Show that for small ε this can be written as a series

E0(L, ε) =
π

2ε2
− π

24L2
+

1

L2
O

(
ε2

L2

)
. (12)

Hint: the following may be useful:∑
n

ne−nx = − ∂

∂x

∑
n

e−nx ,
e−ε/L

(1− e−ε/L)2
=

1

4 sinh2( ε
2L2 )

, (13)

and also

cosech(x) =
1

x
− x

6
+O(x2) . (14)

2The ε takes the role of a UV (high frequency) regulator, i.e. a “UV cut-off”, since no experiment can
probe arbitrarily high frequency/energy modes of the oscillators.
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Solution: Using the first hint, we get

E0(L, ε) =
π

2L2

(
−L ∂

∂ε

) ∞∑
n=1

e−
nε
L

= − π

2L

∂

∂ε

e−ε/L

1− e−ε/L

=
π

2L2

e−ε/L

(1− e−ε/L)2

=
π

8L2 sinh2( ε
2L)

. (15)

In the last equality we used the second hint. Using the third hint, the series
expansion reads

E0(L, ε) =
π

8L2

(
2L

ε
− ε

12L

)2

+
1

L2
O

(
ε2

L2

)
=

π

2ε2
− π

24L2
+

1

L2
O

(
ε2

L2

)
. (16)

(e) Note that for small ε, E0(L, ε) has a divergent piece of order ε−2, which corresponds
to zero-point energy of the field in “free space”. Since free space is infinite in extent
and absolute energy cannot be measured (only energy difference), this divergent piece
can be subtracted off.

Using the result from part (d), Conclude that as ε→ 0, the Casimir force between
the two plates is given by

F = − π

24L2
, (17)

and hence this force between the plates is indeed attractive.

Hint: recall the relationship between force and work/energy.

Solution: Subtracting the free space energy and take the limit, the vacuum
density is

lim
ε→0

E0(L, ε) = − π

24L2
. (18)
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Note that vacuum density is already of the form ∆E
∆x , which is the work done on

the plates “by the vacuum”. Thus this is the Casimir force. The negative sign
implies that this force is attractive.

(f) Let us redo part (d) using a neat method: recall that the Riemann zeta function is
defined by

ζ(s) :=
∞∑
n=1

1

ns
. (19)

Using the fact that ζ(s) = − 1
12 , show that3

F = − π

24L2
. (20)

Remark: the solution should be short.

Solution: This is the so-called zeta-regularization: we use the fact that

ζ(−1) =

∞∑
n=1

n = − 1

12
, (21)

which is a result obtained using the so-called analytic continuation in complex
analysis (often sensationalized as 1+2+3+... = − 1

12). Using this, we immediately
get the magical result

E0(L) = − π

24L2
. (22)

almost with no effort.

3An interested reader will realize that the value of ζ(−1) is, taken naively, surprising.
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