
1 Question 1: Communication Using Qubits

(a) Suppose that we are given a device that can randomly generate any pure
state with equal probability. Calculate the density matrix of the output state
from this device.

Ans: ρ = 1
2
I2.

Solution:

[By Observation]
We parametrise the qubit state on a Bloch sphere. Notice that for any state
|ψ〉 with Bloch vector ~n, there is a corresponding state |ϕ〉 with Bloch vector
−~n. Since a qubit state can be represented by

ρ =
1

2
(I + ~n · ~σ)

where ~σ are the Pauli matrices, the sum of the density matrices of |ψ〉 and |ϕ〉
is simply

A = I

Summing this value over all pure states with equal probability will yield I still,
but since we double counted the states, the final density matrix is 1

2
I.

[Proper Way]
We parametrise the qubit state on a Bloch sphere. For equal probability, the
probability density function is p(Ω) = 1

4π
, which gives

∫
p(Ω)dΩ = 1. A generic

qubit state can be written as

ρ(Ω) =

[
cos2

(
θ
2

)
cos
(
θ
2

)
sin
(
θ
2

)
eiφ

cos
(
θ
2

)
sin
(
θ
2

)
e−iφ sin2

(
θ
2

) ]
The resulting density matrix is simply

ρ =
1

4π

∫ π

0

dθ

∫ 2π

0

dφρ(Ω)

which gives ρ = 1
2
I2.

(b) Using the properties of a density matrix, prove that the Holevo quantity
for any encoding on a n-dimensional quantum system is bounded by log2 n.
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Furthermore, prove that this bound is tight.

Ans:

[Bound]
From properties of density matrix, we have that ρ has n eigenvalues λi that are
non-negative and sum to 1. Hence, we can write the von-Neumann entropy as

S(ρ) = −
∑
i

λi log2(λi)

We can maximise this with constraints
∑

i λi = 1 and λ ≥ 0 by using Lagrange
multipliers. The Lagrangian of this problem is

L = −
∑
i

λi log2(λi) + µ(
∑
i

λi − 1)−
∑
i

νi(λi)

To maximise, we set ∂L
∂λi

= 0, and obtain

λi = 2−
1

ln 2
+µ+νi

This satisfies the positivity constraint for any νi and µ, and substituting the
result into

∑
i λi = 1 yields

n2−
1

ln 2
+µ+νi = 1

which can be simplified to get µ+νi = 1
ln 2
−log2 n. This gives λi = 1

n
. Therefore,

the maxima of S(ρ) is log2 n. Therefore, since χ(ρ) ≤ S(ρ), we have that the
Holevo quantity is bounded by log2 n.

[Tightness]
ρj = |j〉〈j| with 〈j|j′〉 = δjj′ and pj = 1

n
satisfies the bound, hence, the bound

is tight.

(c-i) List the unitaries that A can perform on her qubit in |ψ−〉AB to
obtain states |ψ−〉AB, |ψ+〉AB, |φ+〉AB, and |φ−〉AB. [Note: |ψ+〉AB =
1√
2
(|0〉A |1〉B + |1〉A |0〉B), |φ−〉AB = 1√

2
(|0〉A |0〉B − |1〉A |1〉B), |φ+〉AB =

1√
2
(|0〉A |0〉B + |1〉A |1〉B)]

Ans: I2, Z, X, XZ.
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(ii) Propose a method for A to send the information of two classical bits if A
and B begins with an entangled state |ψ−〉AB.

Ans: A encodes each message as a unitary from {I, Z,X,XZ} (i.e. If message
is 00, encoding is I, message is 01, encoding is Z etc). Based on the message, A
performs the corresponding unitary and sends her qubit to B. When B receives
the message, he measures the two qubits in the Bell basis to decode the message.
[Note: This is superdense coding]

(d) Explain how B can obtain his desired bit kj from m and the PR box.

Ans: B can first insert some b into the PR box to obtain some y. One can then
XOR y and m to obtain

y ⊕m = k0 ⊕ x⊕ y
= k0 ⊕ ab
= k0 ⊕ (k0 ⊕ k1)b

If b = 0, the XOR is k0. If b = 1, the XOR is k1. Hence, to get his desired bit
kj, B can simply insert b = j to get kj = m⊕ y.
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