
Farisan Dary (PLANCKS Singapore 2021)

3. Schrödinger equation

(a) Using ∂µ = ei µ∂i and the orthogonality condition of ei µ, one can show that e µ
i ∂µ = ∂i. Thus, it is

straightforward to get p̂i = −ie µ
i ∂µ. To get Eq. (6), note that p̂2i = δijpipj = −(eiν∂ν)(e µ

i ∂µ). By
virtue of the product rule, one simplifies p̂2i such that it is equal to the argument in the square bracket
of Eq. (6).

(b) It is straightforward to get the first term of Eq. (8) from the definition of inverse metric tensor gµν .
For the second term, we note that gµνei ν = eiµ and Γ µν

µ = gµλΓ ν
µλ = −gµλei λ∂µe ν

i , thus Γ µν
µ =

−eiµ∂µe ν
i .

(c) Using gµν , gµν and gµνgνλ = eiµe ν
i eiνe

i
λ = δµλ given in part (b), the quantity Γµ can be shown to

take the form of Γ λ
µλ in Eq. (7). Also, Γ µν

µ = −eiµ∂µe ν
i found in part (b) can be used to show that

Γ µν
µ + Γ νµ

µ = −∂µgµν .

(d) We now take advantage of the fact that the derivatives applied to the coordinate transformation xi(q)
commute, thus causing Γ λ

µν to be symmetric, i.e. Γ λ
µν = Γ λ

νµ . Therefore, Γ νµ
µ = Γν . With this, we

can write Γ µν
µ = −∂µgµν − Γµ = −∂µgµν − (∂µ

√
g)/
√
g. Via product rule of ∂µ, we get Eq. (10).

(e) Again, via product rule and the result found in part (d), it is easy to see that ∆ in Eq. (8) can be
written in a more compact form ∆ = ∂µ(gµν

√
g∂ν)/

√
g. This is the Laplace-Beltrami operator invoked

in Eq. (11).

(f) If the Lagrangian coordinates qi do not merely reparametrize the Euclidean space but specify the points of
a general geometry, we cannot proceed as above and derive the Laplace-Beltrami operator by a coordinate
transformation of a Cartesian Laplacian. With the canonical quantization rules being unreliable in
curvilinear coordinates, we face severe difficulties in quantizing such a system. Fortunately, a large class
of non-Cartesian systems allows for a unique quantum-mechanical description on completely different
grounds. These systems have the common property that their Hamiltonian can be expressed in terms
of the generators of a group of motion in the general coordinate frame. For symmetry reasons, the
correspondence principle must then be imposed on the commutators of the group generators rather
than upon the Poisson brackets of the canonical variables p and q. Note that the brackets containing
two group generators specify the structure of the group, while those containing a generator and a
coordinate specify the defining representation of the group in configuration space. The replacement of
these brackets by commutation rules constitutes the proper generalization of the canonical quantization
from Cartesian to non-Cartesian coordinates (group quantization). The replacement rule will be referred
to as the group correspondence principle. The canonical commutation rules in the Euclidean space may
be viewed as a special case of the commutation rules between group generators, i.e. of the Lie algebra
of the group. In a Cartesian coordinate frame, the group of motion is the Euclidean group containing
translations and rotations. The generators of translations and rotations are the momenta and the
angular momenta, respectively. According to the group correspondence principle, the Poisson brackets
between the generators and the coordinates have to be replaced by commutation rules. Thus, in the
Euclidean space, the commutation rules between group generators and coordinates lead to the canonical
quantization rules. This is true in particular for systems whose energy depends on generators of the group
of motion other than those of translations, for instance on the angular momenta. Then the commutators
between the group generators must be used for quantization, rather than the canonical commutators
between positions and momenta.
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5. Interacting gas

(a) Trivial (use the Hamiltonian given in the partition function).

(b) The partition function now reads

Z(N,V, T ) =
1

N !λ3N

∫ ∏
i

d3ri
∏
j<k

(1 + fjk)

=
1

N !λ3N

∫ ∏
i

d3ri

(
1 +

∑
j<k

fjk +
∑

j<k,l<m

fjkflm + · · ·
)

The first term simply gives a factor of the volume V for each integral, so we get VN . The second term
has a sum, each element of which is the same. They all look like∫ n∏

i=1

d3ri f12 = V N−1
∫
d3r f(r)

where we’ve simply changed integration variables from r1 and r2 to the centre of mass ~R = (~r1 + ~r2)/2
and the separation ~r = ~r1 − ~r2. We do not need to worry about the limits of integration change in the
integral over ~r, since the integral over f(r) only picks up contributions from atomic size distances, and
this is only actually a problem close to the boundaries of the system where it is negligible. There is a
term like this for each pair of particles − that is N(N − 1)/2 such terms. For N ∼ 1023, it is effectively
N2/2. Ignoring terms quadratic in f and higher, the partition function then takes the form of Eq. (7).

(c) Now that we have Z in terms of f , we use Helmholtz free energy to get the desired expression for p. It
is straightforward to integrate the piecewise potential U(r) and obtain Eq. (9). The virial coefficients
read a = 2πr30U0/3 and b = 2πr30/3.

(d) Looking back to the integral in Eq. (8), we see that a long-range force of the form 1/rn will only give
rise to a convergent integral for n ≥ 4. This means that the techniques described above do not work for
long-range potentials with fall-off 1/r3 or slower (e.g. Coulomb interactions).
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7. Gravitational lensing

(a) Trivial (keep only terms in the same order of the perturbation).

(b) Taking µ = α = 0 in Γµαβ = 1
2g
µν (∂βgνα + ∂αgνβ − ∂νgαβ), we get

Γ0
0i =

1

1 + 2Φ
∂iΦ

Assuming weak lens, i.e. Φ � 1 and keeping term that is in the order of the pertubation, we have
Γ0
0i = ∂iΦ. While setting α = β = 0, we get Γi00 = ∂iΦ. The other components read

Γijk =
1

2
δil (∂kglj + ∂jglk − ∂lgjk)

=
1

2
δii
(
δij∂k (1− 2Φ) + δik∂j (1− 2Φ)− δjk∂i (1− 2Φ)

)
= δjk∂

iΦ− δik∂jΦ− δij∂kΦ

(c) Note that the geodesic equation reads

d2Xα

dλ2
+ Γαµν

dXµ

dλ

dXν

dλ
= 0

Using the null geodesic and taking α = 0,

dk0

dλ
+
dl0

dλ
+ Γ0

00

(
dx0

dλ

)2

+ 2Γ0
i0

dxi

dλ

dx0

dλ
= 0

dk0

dλ
+
dl0

dλ
+ 2

dΦ

dλ

(
k0 + l0

)
= 0

Keeping terms in the same order of the pertubation, we have

dl0

dλ
+ 2k

dΦ

dλ
= 0

The other components read

dki

dλ
+
dli

dλ
+ Γi00

(
dx0

dλ

)2

+ Γiαβ
dxα

dλ

dxβ

dλ
= 0

dli

dλ
+ k2∂iΦ + (δαβ∂iΦ− δiβ∂αΦ− δiα∂βΦ) (kα + lα)

(
kβ + lβ

)
= 0

dli

dλ
+ k2∂iΦ + kβk

βgii∂
iΦ−

(
δiβ∂αΦ + δiα∂βΦ

)
kαkβ = 0

dli

dλ
+ 2k2∂iΦ− 2kikσ∂σΦ = 0

(d) Suppose a light ray starts out into ẑ-direction and passes a lens at z = 0, with impact parameter

b =
√
x2 + y2. For the point mass, Φ = −GM/r where r =

√
x2 + y2 + z2. The perpendicular

components are

(∂xΦ, ∂yΦ) =
GM

r3
(x, y) (1.9)

Since Φ � 1, we expect the deflection angle to be small and hence the total deflection angle can be
approximated by the integral over l̇i along the unperturbed light path:

αi = 2k

∫
P

(
∂iΦ− 1

k2
kikσ∂σΦ

)
dλ

Obviously αx = 0, since the two terms cancel each other for ~k = (k, 0, 0). Note that αy = 2k
∫
P ∂

yΦ dλ,
and using x = kλ, we integrate to get αy = 4GM/b.

Page 3 of 5



Farisan Dary (PLANCKS Singapore 2021)

9. Boson-Fermion correspondence

(a) The grand partition function reads

Z =
∑
i

e−β(Ei−µNi) (3.1)

We rewrite such that N is fixed in the summation and then eventually being summed over all possible
N , that is

Z =

∞∑
N=0

eβµNZN

where ZN denotes the N -particle canonical partition function

ZN =
∑
i

e−βEi

where i sums over the systems. We note that the system is in diffusive contact with a reservoir, so the
average number is controlled by the chemical potential although the number of bosons is not fixed (open
systems). It is impossible to do the calculation in canonical ensemble since the sums cannot be carried
out independently of each other, instead we must always make sure that the restriction

∑
i ni = N is

obeyed. If we had no restriction, however, the sums then would factorize into independent sums over
each occupation number and they can be computed very easily. This is reason we need to go to the grand
canonical ensemble − where the number of particles is not fixed anymore, and hence the restriction is
lifted.

(b) With energy given, the grand partition function reads

Z =

∞∑
N=0

exp

βµ∑
j

nj

∑
i

exp

−β∑
j

nj(εj + U(nj − 1))


=

∞∑
N=0

∑
i

∏
j

exp (−β (nj(εj + U(nj − 1)− µ)))

We rewrite Z again by simply summing over the occupation numbers of every state without restriction:

Z =
∏
j

∑
nj

exp (−β (nj(εj + U(nj − 1)− µ)))


(c) The average occupation of the state nk can be written as follow:

〈nk〉 =
1

Z
∑
R

nk exp (−β (ER − µNR))

=
1

Z

(∏
j 6=k

∑
nj

exp (−β (nj(εj + U(nj − 1)− µ)))

)(∑
nk

nk exp (−β (nk(εk + U(nk − 1)− µ)))

)

=

∞∑
nk=0

nk exp (−β (nk(εk + U(nk − 1)− µ)))

∞∑
nk=0

exp (−β (nk(εk + U(nk − 1)− µ)))

(d) For U = 0, we have E = nε. It is then obvious that we would recover the Bose-Einstein distribution. To
demonstrate this, note that for U = 0:

〈nk〉 =

∞∑
nk=0

nk exp (−β (nk(εk − µ)))

∞∑
nk=0

exp (−β (nk(εk − µ)))
= − 1

β

∂

∂εk
log

( ∞∑
nk=0

exp (−βnk(εk − µ))

)
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which by evaluating the infinite geometric progression gives

〈nk〉 =
1

β

∂

∂εk
log(1− exp(−β(εk − µ))) =

1

eβ(εk−µ) − 1

(e) In the case U →∞, we observe that the occupation number nk has to take {0, 1} for 〈nk〉 in part (c) to
make sense. This condition is satisfied by the particles obeying Pauli exclusion principle. So, we would
expect 〈nk〉 takes the form of Fermi-Dirac distribution. Running the sum only up to nk = 1, we have

〈nk〉 =

1∑
nk=0

nk exp (−β (nk(εk − µ)))

1∑
nk=0

exp (−β (nk(εk − µ)))

=
1

eβ(εk−µ) + 1

Thus, we see that bosons obey Fermi-Dirac statistics in this limit. These bosons are known as hard-
core bosons. The limit U → ∞ is known as the hard-core limit, corresponding to an infinite repulsive
interaction. It has been studied for typical systems with very large repulsive interactions at close range,
such as He-4 which can be renormalized (to first order) into hard-core boson.

(f) It is worth noting that the local Hilbert space at every site describes the presence or absence of a single
boson and has dimension of two. For spin-1/2 particle, the Hilbert space has the same size, and thus it
is possible to provide a map between them two.

(g) One can identify the spin up state for spin-1/2 with the occupied state for a hard core boson and the
spin down state with an empty state, i.e. | ↑〉 → |1〉 and | ↓〉 → |0〉. For hard-core boson, we define the
creation c† and annihilation c satisfying

c†|0〉 = |1〉, c†|1〉 = 0, c|0〉 = 0, c|1〉 = |0〉

For spin-1/2 particle, we define the (spin) raising S+ and lowering S− operator as S+ = Sx + iSy and
S− = Sx − iSy, respectively. They obey

S+| ↓〉 = |1〉, S+|1〉 = 0, S−|0〉 = 0, S−|1〉 = |0〉

Hence, one gets S+ → c† and S− → c. In evaluating [c, c†], it is useful to know the fact that [c, c†]|0〉 = |0〉
and [c, c†]|1〉 = −|0〉. It is then easy to see [c, c†] = 1 − 2n. What about that of spin-1/2? We would
expect [c, c†] = [S−, S+]. The mapping:

S+S− = Sz + 1/2 → c†c = n

gives [S−, S+] = 2i[Sx, Sy] = −2Sz = 1 − 2n. Note that the mapping from spin to fermions or bosons
can be rigorously constructed in any dimensions but in general, however, cannot be solved due to strong
interactions requirement. However, as we’ve seen, the case is quite different in 1 + 1D − there is a
straightforward mapping from bosons to fermions and one could say that they are not fundamentally
different. But still, the wavefunction for N hard-core bosons system does not own the antisymmetric
property with respect to exchange of two particles that is present in fermionic system.
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