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1 Casimir effect

It has been experimentally verified that two uncharged parallel conducting plates placed very close to one
another (at separation of order µm) experiences an attractive force in vacuum. This result is a bona fide
prediction of quantum field theory (QFT), as it cannot be explained classically or by non-relativistic quantum
mechanics. This question gives a quick exposition to the notion of how a quantum field contains an infinite set
of harmonic oscillators in the simple context of a scalar field theory, though the general idea persists in other
realistic quantum field theories such as quantum electrodynamics (QED), quantum chromodynamics (QCD),
etc. A guiding principle to bear in mind is that many physically interesting aspects of quantum field theory
can be traced to the non-trivial nature of its vacuum.

Remark: This question assumes no prior knowledge of QFT. We set c = ~ = 1 throughout, as a PLANCKS
member should.

(a) Consider a classical massless scalar field in (1+1)-dimensional spacetime φ(t, x), subject to Dirichlet
boundary condition

φ(t, x = 0) = φ(t, x = L) = 0 . (1)

Show that if this field satisfies the wave equation(
− ∂2

∂t2
+

∂2

∂x2

)
φ(t, x) = 0 , (2)

the general solution can be written in the form of

φ(t, x) =

∞∑
n=−∞

(
αnun(t, x) + βnu

∗
n(t, x)

)
, (3)

where un(t, x) = Ne−iωnt sinωnx and N is some normalization constant that does not depend on n, and
show that for real scalar field, βn = α∗n.

(b) The Klein-Gordon inner product is given by

(f, g) := −i
∫ L

0

dx

(
f
∂g∗

∂t
− ∂f

∂t
g∗
)
. (4)

Find the normalization constant N using the orthonormality of the basis functions (um, un) = δm,n.

(c) We obtain a quantized scalar field by promoting αn to an annihilation operator ân, and α∗n to a creation
operator â†n. In this sense, a quantum field is effectively an infinitely many coupled harmonic oscillators
in real space (or uncoupled harmonic oscillators in momentum space).

The Hamiltonian of the scalar field can therefore be written as the sum of all oscillator Hamiltonians

Ĥ =

∞∑
n=1

ωn

(
â†nân +

1

2

)
. (5)

Consider the vacuum state of the field |0〉, defined to be the state that is annihilated by all ân, i.e.
ân|0〉 = 0 for all positive integers n. Show that the vacuum energy expectation value per unit length is
given by

E0(L) =
π

2L2

∞∑
n=1

n . (6)
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(d) Consider the regularized1 vacuum density defined to be

E0(L, ε) :=
π

2L2

∞∑
n=1

ne−
εn
L . (7)

Show that for small ε this can be written as a series

E0(L, ε) =
π

2ε2
− π

24L2
+

1

L2
O

(
ε2

L2

)
. (8)

Hint: the following may be useful,

∑
n

ne−nx = − ∂

∂x

∑
n

e−nx ,
e−ε/L

(1− e−ε/L)2
=

1

4 sinh2( ε
2L2 )

, (9)

and also

cosech(x) =
1

x
− x

6
+O(x2) . (10)

(e) Note that for E0(L, ε) has a divergent piece of order ε−2 for small ε, which corresponds to zero-point
energy of the field in “free space”. Since free space is infinite in extent and absolute energy cannot be
measured (only energy difference), this divergent piece can be subtracted off. Using the result from part
(d), show that the Casimir force between the two plates as ε→ 0 reads

F = − π

24L2
, (11)

and hence this force between the plates is indeed attractive.

Hint: recall the relationship between force and work/energy.

(f) Let us redo part (d) using a neat method: recall that the Riemann zeta function is defined by

ζ(s) :=

∞∑
n=1

1

ns
, Re(s) > 1. (12)

Via analytic continuation of the sum, and using the fact that ζ(−1) = −1/12, show that

F = − π

24L2
. (13)

Erickson Tjoa - University of Waterloo

1The ε takes the role of a UV (high frequency) regulator, i.e. a “UV cut-off”, since no experiment can probe arbitrarily
high frequency/energy modes of the oscillators.
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2 Classical Information Communication

In classical communication, information is sent via modulated electromagnetic waves, and this technology one
of the main drivers of the current information age. With the ability to have ever greater control of quantum
systems now, it is interesting to explore if using quantum systems would provide an advantage over classical
communication. In general, the state of a n-dimensional (n = 2 for qubits) quantum system can be expressed
as a density matrix, ρ, which is a n × n matrix with two properties: it has trace 1, and positive eigenvalues.
For a system where we prepare states |ψi〉 with probability pi, we can express the density matrix of the output
state as

ρ =
∑
i

pi|ψi〉〈ψi| (1)

(a) [2 points] Suppose that we are given a device that can randomly generate any pure qubit (n = 2) state
with equal probability. Calculate the density matrix of the output state from this device.

We can try to communicate a message i ∈ {1, . . . ,m}, (we assume i to appear with uniform probability
pi = 1/m) by encoding them as a state on a quantum system, ρi. For such an encoding scheme, the
amount of classical bits one can communicate successfully via a noiseless channel (more accurately, the
mutual information) is bounded by the Holevo quantity:

χ(ρ) = S(ρ)−
∑
i

piS(ρi) , (2)

where S(ρ) is the von-Neumann entropy. The von-Neumman entropy is a quantum version of the classical
entropy, and is defined as

S(ρ) = −
∑
j

λj log2 λj , (3)

where λj is the eigenvalue of ρ.

(b) [4 points] Using the properties of a density matrix, prove that the Holevo quantity for any encoding on
a n-dimensional quantum system is bounded by log2 n. Furthermore, prove that this bound is tight.

Setting n = 2 shows that using a single qubit confers no additional advantage in classical communication
over using a classical bit, but things change if we allow the communicating parties to share an entangled
state.

(c) Suppose two parties, A and B, share a two-qubit entangled state |ψ−〉AB = 1√
2
(|0〉A|1〉B − |1〉A|0〉B),

with A holding onto the first qubit and B holding onto the second qubit.

(i) [1 point] List the unitaries that A can perform on her qubit in |ψ−〉AB to obtain states |ψ−〉AB ,
|ψ+〉AB , |φ+〉AB , and |φ−〉AB .

Note:
|ψ+〉AB = 1√

2
(|0〉A|1〉B + |1〉A|0〉B)

|φ−〉AB = 1√
2
(|0〉A|0〉B − |1〉A|1〉B)

|φ+〉AB = 1√
2
(|0〉A|0〉B + |1〉A|1〉B)

(ii) [2 points] Propose a method for A to send two classical bits to B if A and B has an entangled state
|ψ−〉AB .
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Figure 1: Schematic of a PR box.

We can see that using entanglement, A can convey two bits of classical information to B by sending
one qubit. However, there are stronger resources beyond quantum theory (hypothetical ones) that can
perform even more powerful communication tasks, and one such resource is the PR box. A PR box (see
Figure 1) held by A and B takes in input bit a from A and input bit b from B, and outputs bit x to A
and bit y to B following the probability distribution

Pr[x, y|a, b] =

{
0.5 x⊕ y = a× b
0 otherwise

, (4)

where ⊕ is addition modulo 2 (XOR). Suppose we have a communication task where A has two bits
of information, k1, and k2, and B can choose to learn either k1 or k2. If B is not allowed to send any
messages to A, it is clear with that A must send over the information of both bits (with one qubit + en-
tanglement, or two classical bits) for B to choose his desired bit at some later time. If a PR box is shared
between A and B, this can be achieved using only a single classical bit. To achieve the communication,
A first inputs a = k0⊕k1 into the PR box to obtain output x. A then sends a single bit m = k0⊕x to Bob.

(d) [1 point] Explain how B can obtain his desired bit kj from m and the PR box.

Kon Wen Yu - National University of Singapore
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3 Schrödinger equation

The extension of the quantum-mechanical formalism to systems described by a set of general Lagrange co-
ordinates q1, ... , qN is not straightforward. Note that the correspondence principle are sufficient to quantize
the system2 only in the special case that qi (i = 1, ... , N) represent merely a curvilinear reparametrization
of a D-dimensional Euclidean space parametrized by xi. The number N of coordinates is then equal to the
dimension D, and a variable change from xi to qj in the Schrödinger equation leads to the correct quantum
mechanics. It will be useful to label the curvilinear coordinates by Greek superscripts, and write qµ instead of
Latin subscripts in qj . This will help us to write all ensuing equations in a form that is manifestly covariant
under coordinate transformations. For the Cartesian coordinates, we shall use Latin indices alternatively as
sub- or superscripts. The coordinate transformation xi = xi(qµ) implies the relation between the derivatives
∂µ = ∂/∂qµ and ∂i = ∂/∂xi:

∂µ = ei µ(q)∂i , (1)

with the transformation matrix,

ei µ(q) = ∂µx
i(q) (2)

called basis D-ad e.g. triad in 3 dimensions, tetrad in 4 dimensions, etc. Assuming it exists, let e µ
i (q) =

∂qµ/∂xi be the inverse matrix called the reciprocal D−ad, satisfying with ei µ the orthogonality and com-
pleteness relations:

ei µ e
ν
i = δ ν

µ , ei µ e
µ
j = δij (3)

where δab = 1 if a = b and 0 if otherwise. In this question, we adopt Einstein summation convention in which
repeated indices are summed over, e.g

3∑
i=1

bic
i = b1c

1 + b2c
2 + b3c

3 = bic
i (4)

Here the superscript in ci denotes the i-th component of c. We set ~ = 1 throughout.

(a) [1 point] Show that the curvilinear transform of the Cartesian momentum operators read

p̂i = −i e µ
i (q)∂µ (5)

and that the corresponding Hamiltonian operator of a free-particle with mass M takes the form

Ĥ0 = − ∆

2M
= − 1

2M

[
eiµe ν

i ∂µ∂ν + (eiµ∂µe
ν
i )∂ν

]
. (6)

The quantity ∆ is known as the Laplacian.

(b) [2 points] We introduce the metric tensor gµν(q) := eiµe
i
ν(q) and its inverse gµν(q) = eiµe ν

i (q) defined
by gµνgνλ = δµλ. The affine connection reads

Γ λ
µν (q) = −ei ν(q) ∂µe

λ
i (q) . (7)

Show that the Laplacian now takes the form

∆ = gµν(q)∂µ∂ν − Γ µν
µ (q)∂ν , (8)

with Γ λν
µ being defined as the contraction Γ λν

µ = gλκ Γ ν
µκ .

2The correspondence principle is the rule of obtaining Hamiltonian operator in the Schrödinger equation from the classical
Hamiltonian by simply substituting x→ x̂ and p→ −i∂x.
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(c) [2 points] The infinitesimal volume element is given by dDx =
√
g dDq, where g(q) = det(gµν(q)) denotes

the determinant of the metric tensor. With this determinant, we form the quantity

Γµ :=
1
√
g

(∂µ
√
g) =

1

2
gλκ (∂µgλκ) . (9)

Show that Γµ = Γ λ
µλ and Γ µν

µ = −∂µgµν − Γ νµ
µ .

(d) [1 point] Argue why Γ νµ
µ = Γµ and show that

Γ µν
µ = − 1

√
g

(∂µg
µν√g) . (10)

(e) [2 points] The result in part (d) allows us to write Eq. (8) in a more compact form. In differential
geometry, this form is known as the Laplace-Beltrami operator. Show that this compact form of Λ
allows the Schrödinger equation in curvilinear coordinates to be written as[

− 1

2M
√
g
∂µg

µν√g∂ν + V (x(q))

]
Ψ(q, t) = i∂tΨ(q, t) , (11)

(f) [2 points] If the Lagrangian coordinates qi do not merely reparametrize the Euclidean space, but also
specify the points of a general geometry, we cannot proceed as above to get Eq. (11) by a coordinate
transformation of a Cartesian Laplacian. Explain why.

Hint: think about Poisson brackets, commutation rules, and group generators in Cartesian and non-
Cartesian coordinate frames.

Farisan Dary - Nanyang Technological University
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4 AM, FM, PM, and Optical Cavity

(a) [2 points] Amplitude Modulation (AM)
Given a laser field with electric field strength E = E0 cos(ωt) passing through an optical element that
partly modulates the electric field strength of the laser with

1

4
(3 + cos(ωmt)) , (1)

where ωm � ω. This optical element could be a crystal that changes the polarization axis of the input
field depending on the voltage applied across the crystal and a polarizer at the end. Show that the
resulting field has three components oscillating at ω − ωm, ω, and ωm.

Suppose we shine this amplitude-modulated field on a fast photodetector, what would be the frequency
of the photodetector signal? Given that the photodetector detect the amplitude squared3 of the input
field with some proportional coefficient: I = α|E|2, and the laser frequency ω (often in the 100 THz) is
too fast for the photodetector to pick up.

(b) [2 points] Phase and frequency modulation (PM/FM)

Imagine now that the input field is modulated by passing light through another crystal whose index
of refraction changes when a voltage is applied across the crystal. The applied voltage is at frequency
ωm � ω and produce a phase shift of β � 1 such that

EPM = E0 cos(ωt+ β cos(ωmt)) . (2)

Show that the instantaneous frequency of the signal is

ωinstant = ω − βωm sin(ωmt) , (3)

which is the same as modulating the frequency of the signal. This explains that PM and FM are closely
related. Now, expand the phase modulated signal into its Fourier components to the first order in β.
If you shine this phase-modulated laser field on the photodetector given above, what would be the fre-
quency of the photodetector signal to first order in β?

Hint: you may find these expressions useful

ex(t−t−1)/2 =

∞∑
n=−∞

Jn(x) tn , (4)

where Jn(x) are the Bessel functions of the first kind given by

Jn(x) =

∞∑
m=0

(−1)m

m! Γ(m+ n+ 1)

(x
2

)2m+n

, n ≥ 0 . (5)

Also, another property that you may find useful is J−n(x) = (−1)nJn(x).

(c) [2 points] Optical cavities

An optical cavity is an arrangement of mirrors that forms a standing wave within its interior. We
consider the simplest optical cavity made of two curved mirror. Near resonance, the circulating electric
field inside of the cavity is given by the complex phasor Ec:

Ec =
Ei

1− i δ
κ/2

, (6)

3Actually, the photodetector detects the photon number rather than the amplitude squared of the input field. This difference
only matters for low and single photon experiment.
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where Ei is the incident field, δ = ω − ωc is the difference of the incident field frequency to the cav-
ity resonance frequency (also called detuning), and κ is the decay rate of energy stored within the cavity.

Besides, there is a reflected field from the cavity when one tries to couple light to the cavity. In a
high mirror reflection limit, the reflected field is given by

Er = Ei

[
1− 1

1− i δ
κ/2

]
. (7)

Plot the real and imaginary part of the reflected field against δ/κ from (δ/κ) � −1 to (δ/κ) � 1 and
discuss which one would be useful to tell that the incident field frequency is higher, equal, or lower than
the resonance frequency of the cavity?

(d) [2 points] Optical cavities and amplitude-modulated incident field

Let’s couple the amplitude-modulated field from part (a) into this optical cavity and look at the reflected
field. For this question, we are only interested in the regime when ωm � κ� |δ| so that the sidebands
of the AM field reflect totally off the cavity. If we detect the reflected field with a photodetector, do
we see a frequency component at ωm? Which part of the reflected field of part (c) (real or imaginary)
is included in this signal? Can we use this signal to lock our laser frequency to the cavity resonance
frequency?

(e) [2 points] Optical cavities and phase-modulated incident field

Now, let’s couple the phase-modulated signal from part (b) into this optical cavity and look at the
reflected field. For this question, we are only interested in the regime when ωm � κ � |δ| so that the
sidebands of the PM field reflect totally off the cavity. If we detect the reflected field with a photodetector,
do we see a frequency component at ωm? Which part of the reflected field of part (c) (real or imaginary)
is included in this signal? Can we use this signal to lock our laser frequency to the cavity resonance
frequency?

Tin Nghia Nguyen - University of Colorado at Boulder
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5 Interacting gas

In introductory statistical mechanics, we always treat the gas particles moving around, unaware of each other.
Things will get much more interesting if we take into account the interactions. In this question, we use a simple
approximation scheme to understand the effects of interactions between particles, particularly on monoatomic
gas. The corrections to the equation of state of ideal gas are often expressed in terms of a density expansion,
known as the virial expansion:

p

kBT
=
N

V
+B2(T )

N2

V 2
+B3(T )

N3

V 3
+ · · · , (1)

where the functions Bj(T ) are known as the virial coefficients. Our main goal is then to compute the virial
coefficients starting from the underlying potential energy U(r) between two neutral atoms separated by a
distance r. We restrict ourselves to

U(r) =

{
∞ r < r0

−U0(r0/r)
6 r ≥ r0

, (2)

which incorporates a hard-core repulsion that forbids the particles to get closer than a certain fixed distance.
One can write the Hamiltonian of the gas as follow:

H =

N∑
i=1

p2
i

2m
+
∑
i>j

U(rij) , (3)

where rij = |~ri − ~rj | is the separation between particles. The restriction i > j on the final sum ensures that
we sum over each pair of particles exactly once.

(a) Show that the partition function Z(N,V, T ) reads

Z(N,V, T ) =
1

N !λ3N

∫ ∏
i

d3rie
−β

∑
j<k U(rjk) , (4)

where λ =
(
2π~2/mkBT

)1/2
is the thermal wavelength and β = 1/(kBT ).

Hint: you may take the following as a starting point,

Z(N,V, T ) =
1

N !

1

(2π~)3N

∫ N∏
i=1

d3pid
3rie

−βH . (5)

(b) It is not so useful to expand the exponential term in Eq. (4) as an expansion parameter. Instead,
we consider the Mayer f function f(r) = e−βU(r) − 1 as an expansion parameter. We further define
fij = f(rij) such that

Z(N,V, T ) =
1

N !λ3N

∫ ∏
i

d3ri
∏
j>k

(1 + fjk) . (6)

Hence, show that the above expression can be written as follow:

Z(N,V, T ) = Zideal

(
1 +

N

2V

∫
d3r f(r) + · · ·

)N
, (7)

where Zideal = V N/(N !λ3N ). Note that the density of the gas is small.

(c) By ignoring terms quadratic in f and higher, show that

pV

NkBT
= 1− N

2V

∫
d3r f(r) , (8)
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and using U(r) given in Eq. (2), show that in the limit βU0 � 1:∫
d3r f(r) =

4πr3
0

3

(
U0

kBT
− 1

)
. (9)

Hence, determine the virial coefficients.

Hint: in terms of the partition function Z, Helmholtz free energy F is given by F = −kBT logZ.
Related thermodynamic quantities can be deduced from the fundamental thermodynamic relation

dF = −S dT − P dV + µdN . (10)

.

(d) Can we use Eq. (8) for any potential U(r) between atoms? State the limitations, if any.

Farisan Dary - Nanyang Technological University
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6 Chimney Physics

Figure 2: Sketch of a chimney of height h with a furnace at temperature Tsmoke.

Gaseous products of burning are released into the atmosphere of temperature Tair through a high chimney
of cross-section A and height h (see Fig.2). The temperature inside the furnace is Tsmoke and the volume of
gases produced per unit time in the furnace is B. Throughout this question, we assume the following:

• the velocity of the gases in the furnace is negligibly small.

• the density of the gases (smoke) does not differ from that of the air at the same temperature and
pressure; while in the furnace, the gases can be treated as ideal.

• the pressure of the air changes with height in accordance with the hydrostatic law and the change
of the density of the air with height is negligible.

• the flow of gases satisfies the Bernoulli equation which states

1

2
ρv2(z) + ρgz + p(z) = const , (1)

i.e. it is conserved at all points in the flow. Here ρ, v(z), p(z), and z denote the density of the gas,
velocity, pressure, and height, respectively.

• the change in the gas density is negligible throughout the chimney.

(a) [0.5 point] What is the minimal height of the chimney needed in order for the chimney to function
efficiently such that it can release all of the produced gas into the atmosphere? Express your result in
terms of B, A, Tair, g = 9.81 m/s

2
, ∆T = Tsmoke − Tair. Important: in all subsequent tasks, assume

that this minimal height is the height of the chimney.

(b) [0.5 point] Assume that two chimneys are built to serve exactly the same purpose. Their cross sections
are identical, but are designed to work in different parts of the world: one in cold regions (designed
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to work at an average atmospheric temperature of −30◦C) and the other in warm regions (designed to
work at an average atmospheric temperature of 30◦C). The temperature of the furnace is 400 ◦C. It was
calculated that the height of the chimney designed to work in cold regions is 100 m. How high is the
other chimney?

(c) [1 point] How does the velocity of the gases vary along the height of the chimney? Provide a graph that
shows how the velocity varies along the height of the chimney with the assumption that its cross-section
does not change along the height. Indicate the point where the gases enter the chimney.

(d) [1 point] How does the pressure of the gases vary along the height of the chimney?

Figure 3: Sketch of a solar power plant.

The flow of gases in a chimney can be used to construct a particular kind of solar power plant (solar chimney),
as illustrated in Fig.3. The Sun heats the air underneath the collector of area S with an open periphery to
allow the undisturbed inflow of air. As the heated air rises through the chimney (thin solid arrows), new cold
air enters the collector from its surrounding (thick dotted arrows), enabling a continuous flow of air through
the power plant. The flow of air through the chimney powers a turbine, resulting in the production of electrical
energy. The energy of solar radiation per unit time per unit of horizontal area of the collector is G. Assume
that all that energy can be used to heat the air in the collector (the mass heat capacity of the air is c, and one
can neglect its dependence on the air temperature). We define the efficiency of the solar chimney as the ratio
of the kinetic energy of the gas flow and the solar energy absorbed in heating of the air prior to its entry into
the chimney.

(e) [1 point] What is the efficiency of the solar chimney power plant?

(f) [1 point] Provide a graph that shows how the efficiency of the chimney varies with its height.

The prototype chimney built in Manzanares, Spain, had a height of 195 m, and a radius 5 m. The collector
is circular with diameter of 244 m. The specific heat of the air under typical operational conditions of the
prototype solar chimney is 1012 J/(K kg), the density of the hot air is about 0.9 kg/m

3
, and the typical

temperature of the atmosphere Tair = 295 K. In Manzanares, the solar power per unit of horizontal surface is
typically 150W/m

2
during a sunny day.

(g) [1 point] What is the efficiency of the prototype power plant? Write down the numerical estimate.
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(h) [1 point] How much power could be produced in the prototype power plant?

(i) [1 point] How much energy could the power plant produce during a typical sunny day?

(j) [1 point] How large is the rise in the air temperature as it enters the chimney (warm air) from the
surrounding (cold air)? Write the general formula and evaluate it for the prototype chimney.

(k) [1 point] What is the mass flow rate of air through the system?

Wang Yuzhu - Nanyang Technological University

Page 14 of 22



PLANCKS Singapore 2021

7 Gravitational lensing

Gravitational lensing refers to a phenomenon in which light rays are being deflected by gravitational fields
of massive objects, thus acting as lenses. The bending of light was one of the first important experimental
signatures of General Relativity. In particular, it continues to play crucial roles in dark matter or black hole
detection. The basic idea is that dark matter, though invisible in many ways, could be seen through its
gravitational influence on visible objects and, in particular, by its bending of light emitted by other luminous
objects. One of the most compelling pieces of evidence for dark matter comes from the Bullet Cluster formed
from the merger of two galaxy clusters.

In this question, we deal with a simple exposition of the topic. We assume that the lens is weak, that is,
its Newtonian gravitational potential Φ is much smaller than c2. This approximation is valid in virtually all
cases of astrophysical interest. For instance, a galaxy cluster has gravitational potential |Φ| < 10−4c2 � c2.
From now on, we set c = 1 and begin with the following line element that describes the spacetime for static
Newtonian gravitational sources:

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)(dx2 + dy2 + dz2) , (1)

where Φ is the Newtonian gravitational field. In this question, we adopt Einstein summation convention where
repeated indices are implicitly summed over. For example,

ds2 =

3∑
i=1

3∑
j=1

gijdx
idxj = gijdx

idxj (2)

where gij is known as the metric tensor that describes the spacetime geometry. Assuming that we live in
3 + 1D (1 temporal dimension and 3 spatial dimensions), we write ds2 = gµνdx

µdxν for µ, ν ∈ {0, 1, 2, 3} with
x0 = t and xi = {x, y, z}. Greek indices are used when we include time and Latin indices when we’re just
describing space. Note that we can raise or lower the indices of a tensor using the metric tensor gµν or its
inverse. For examples: gµτA

αβτ = Aαβµ and gµν∂ν = ∂µ.

(a) [2 points] Writing gµν = ηµν + hµν where hµν is the perturbation. We consider the null geodesics:

gµν
dxµ

dλ

dxν

dλ
= 0 (3)

on this background with λ parametrizes the path of photons and calculate the deflection of light using
first-order perturbation theory. We decompose the geodesic xµ(λ) = x(0)µ(λ) + x(1)µ(λ) and solve for
the perturbation x(1)µ(λ) by performing calculations on the flat background. Show that by defining the
wavevectors:

kµ ≡ dx(0)µ(λ)

dλ
, lµ ≡ dx(1)µ(λ)

dλ
, (4)

the null geodesics yields ηµνk
µkν = 0 and hµνk

µkν + 2ηµνk
µlν = 0.

(b) [2 points] Show that the affine connections read

Γ0
0i = ∂iΦ, Γi00 = ∂iΦ, Γijk = δjk∂

iΦ− δik∂jΦ− δij∂kΦ . (5)

Hint: they can be obtained from

Γµαβ =
1

2
gµν (∂βgνα + ∂αgνβ − ∂νgαβ) . (6)

(c) [3 points] From the geodesic equation, show that

dl0

dλ
+ 2k

dΦ

dλ
= 0, and

dli

dλ
+ 2k2∂iΦ− 2ki~k · ~∇Φ = 0 . (7)
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Hint: let a one-dimensional curve in spacetime be parametrized by λ, i.e. X = X(λ). The geodesic
equation reads

d2Xα

dλ2
+ Γαρν

dXν

dλ

dXρ

dλ
= 0 . (8)

If we the proper time as our curve parameter, solving this second-order differential equations gives the
path that extremizes the proper time between the two points.

(d) [3 points] The null geodesic is deflected by the gravitational field of the point mass M such that it is no
longer a straight line. We now wish to derive the deflection angle α as a function of the mass M and
impact parameter. Noting

αi = −1

k

∫
P

dli

dλ
dλ , (9)

where the integral is carried out on the background path P. Note that ki are constants, taking x(0)i = 0
at λ = 0, we can write x(0)i = kiλ.

Figure 4: The photon path being deflected by the gravitational field of the point mass.

Consider the case of a point mass with the background path along the x-direction, i.e. k = (k, 0, 0),
x = kλ, y = b and we also choose z = 0. Suppose the gravitational potential reads

Φ = − GM√
x2 + y2

. (10)

With the result found in part (c), show that αx = 0 and αy = 4GM/b.

This relation for the deflection angle captures the essence of the deflection of light by gravitational
field in General Relativity. The first experimental observation was due to Eddington A. and his team in
May 1919, where a deflection angle of 1.75 arc seconds was observed for stars (belong to the constellation
Taurus) near the Sun during a solar eclipse.

Farisan Dary - Nanyang Technological University

(adapted from Cosmology course taught in 2017 at NTU)
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8 Talk in the Vacuum

Figure 5: Casimir effect driven by quantum vacuum fluctuations between two membranes.

High school physics tells us that we will be incapable of hearing each other in the outer space due to the
fact that there exists no medium in the vacuum. In this question, we deal with this problem with a more
advanced perspective and see whether it is possible for us to arrive with different conclusion. As a starting
point, consider two parallel uncharged conductive plates in a vacuum (see Fig. 5). Classical picture will show
us nothing simply because there is no field, and thus no interactions. In quantum electrodynamics (QED)
framework, however, things get different – when we put these two plates close enough, the so-called Casimir
force (can be attractive or repulsive depending on the nature of the boundary) arises between them.

Now let us replace the plates with two membranes, which could be regarded as the simplification of a vocal
cord and an eardrum.

(a) [1 point] Write down the dynamic equations for the vertical displacement ui(x, y) of these two membranes
with built-in tensile stress as Fig. 6 shows. Assume that the two membranes have the same density ρ
and thickness w, but different stress σ1 and σ2.

(b) [1 point] Write down the fundamental eigenmode profiles for tensile-stressed membranes.

(c) [1 point] Expand the Casimir force term to the first order, and integrate the eigenmode profile on both
sides of the dynamic equations with the correction factors αi, i ∈ {1, 2}:

αi =
4

L2
i

 min{L1,L2}/2∫
−min{L1,L2}/2

dx cos
πx

L1
cos

πx

L2


2

. (1)

(d) [2 point] Prove that the dynamic equations can be simplified to:

ü1 + Ω2
1u1 − 2Ω1gC (u1 − α1u2) = 0

ü2 + Ω2
2u2 − 2Ω2gC (u2 − α2u1) = 0 , (2)

Page 17 of 22



PLANCKS Singapore 2021

Figure 6: Schematics of the structure under theoretical consideration.

where ui(x, y) denotes vertical displacement and Ωi = π(
√

2σi/ρ)/Li are the resonance frequencies and
the coupling rate gC = F ′Cas(d)/2Ωρw.

(e) [1 point] When only one membrane is allowed to move, how much does the presence of Casimir force
cause the membrane resonance frequency to shift? Explain the physical significance of the coupling rate
gC .

(f) [1 point] We now need to figure out a way to simulate the “talking” process. One option is to link these
two membranes to a hot and a cold thermal bath separately. The dynamic equations also needs to be
modified. Write down the modified dynamic equations with thermal bath.

Hint: the Langevin equation can be used to describe thermal Brownian motion of the bath:

m
dv

dt
= −λv + η(t) , (3)

where v is the velocity of the particle and m denotes the particle’s mass. The force acting on the
particle is written as a sum of a viscous force proportional to the particle’s velocity. While the noise
term representing the effect of the collisions with the molecules is denoted by η(t).

(g) [1 point] By solving the equations, we can finally work out the mode temperatures of the membranes:

T ′1 = T1 +
γ2 (T2 − T1)

(γ1 + γ2) (1 + γ1γ2/g2
C)

T ′2 = T2 +
γ1 (T1 − T2)

(γ1 + γ2) (1 + γ1γ2/g2
C)

, (4)

where Ti and γi denote the bath temperature and the mechanical dampings, respectively. Discuss the
weak and strong coupling regimes when the distance between membranes is changed.

(h) [2 point] How can we know that the heat transfer is driven by Casimir force rather than electrostatic
interactions or near-field thermal radiation in experiments?

Hint: think about the different power laws of these interactions.

Wang Yuzhu - Nanyang Technological University
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9 Boson-Fermion correspondence

There are two classes of particles, namely boson and fermion. In undergraduate courses, we know that boson
and fermion obey different statistics − bosons follow Bose-Einstein statistics and fermions follow Fermi-Dirac
statistics:

Fermi-Dirac statistics: 〈ni〉 =
1

eβ(εi−µ) + 1

Bose-Einstein statistics: 〈ni〉 =
1

eβ(εi−µ) − 1
, (1)

where 〈ni〉 is the average number of particles in a single-particle state i, εi is the energy of the single-particle
state i, µ is the total chemical potential, and β = 1/kBT . This difference, however, is more fundamental than
it actually seems. In quantum statistics, these particles are essentially divided on the basis of the (exchange)
symmetry of the system. The spin-statistics theorem then binds these kinds of combinatorial and spin sym-
metry to classify particles, which later becomes known as bosons and fermions. In other words, all particles
that move in 3 + 1D (3 spatial dimensions and 1 temporal dimension) have either integer spin or half-integer
spin, and it can be shown that half-integer spin particles cannot be bosons and integer spin particles cannot be
fermions. In this question, we investigate the 1 + 1D case in which one could turn these two kind of quantum
statistics into one another. In the context of quantum field theories, this is known as constructive bosonization
which serves to solve certain interacting fermion fields.

The starting point is to write the total energy of n interacting bosons as

En = nε+ Un(n− 1) , (2)

where U > 0 is a parameter describing the repulsion. In approaching this problem, we will work in the grand
canonical ensemble.

(a) [1 point] Explain briefly the reason we do not choose to work in canonical ensemble.

Hint: the grand partition function can be expressed as

Z =

∞∑
N=0

eβµNZN , (3)

where ZN denotes the N -particle canonical partition function that reads

ZN =
∑
i

e−βEi . (4)

(b) [1 point] Show that the grand partition function can be expressed as

Z =
∏
j

∑
nj

exp (−β (nj(εj + U(nj − 1)− µ)))

 . (5)

(c) [2 points] Evaluate the average occupation of the state nk knowing that the probability of the system to
be in state i is given by

Pi =
1

Z
exp (−β (Ei − µNi)) , (6)

while the occupancy number can be obtained using the relation

〈ni〉 =
∑
R

niPR . (7)

Note that the state R of the many-particle system can be specified by the occupancy of the single-particle
states.

Hint: at this point, it is not practical to compute the infinite summation or infinite product in 〈nk〉.
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(d) [1 point] By sending U → 0, show that one could recover the Bose-Einstein distribution.

(e) [1 point] What kind of distribution does the particle follow in the regime U → ∞? Briefly explain the
physical relevance of sending U to infinity. This case has been studied for typical systems with very
large repulsive interactions at close range, such as He− 4.

(f) [2 points] Consider one single lattice site and suppose Charlene claims that she can provide a mapping
between spin-1/2 particle and the particle in part (e). Give an argument to either support or reject her
claim.

(g) [2 points] Charlene stands with her claim, nonetheless. She proceed to identify the creation and annihi-
lation operators of the particle in part (e) with the spin raising and lowering operators of the spin-1/2
particle. She denotes the creation and annihilation operators as c† and c, respectively. What is the
relation between c† and c to the spin raising and lowering operators that she gets? Also, help her to
verify the commutation relation [c, c†] = 1− 2n where n = c†c.

Hint: the raising and lowering operators are S+ = Sx + iSy and S− = Sx − iSy, respectively. In
the fundamental representation of SU(2), the operators Si takes the form of Si = σi/2 where σi are the
Pauli matrices obeying σaσb = δab1 + iεabcσc for a, b, c ∈ {1, 2, 3}. Note that δab = 1 for a = b and
vanishes for a 6= b. While εijk = 1 if (i, j, k) is an even permutation of (1, 2, 3), but εijk = −1 if it is an
odd permutation. If any index is repeated, εijk = 0.

Farisan Dary - Nanyang Technological University
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10 Coupled oscillators

Just as a single simple harmonic oscillator has been used as models for various physical systems, a system
of two coupled oscillators could be used to give intuition of dynamical properties of coupled systems. Let’s
consider two identical masses attached with springs such that none of them are under tension or compression
as shown in the figure below.

Figure 7: Two identical masses of mass m attached with springs.

Note that the spring constant of the spring coupling the two masses is κ� k, where k is the spring constant
of springs attached to the boundaries. Let the position of the particle on the left and right be x1 and x2,
respectively.

(a) [1 point] Prove that the equation of motion for this system is

ẍ = − 1

m
Kx , (1)

where x = (x1, x2)T , and K =

(
k + κ −κ
−κ k + κ

)
.

(b) [2 points] Find the normal modes of oscillation by using the ansatz x = Ceiωt, where C is a column
vector. Given κ� k, what are the angular frequency of these modes?

(c) [2 points] Suppose that at t = 0, the particle on the left is displaced by A while the particle on the right
is left at its equilibrium position. Find the evolution of x1, x2, and the envelopes of the oscillations. This
behavior is similar to the Rabi oscillation of atoms in external field and spins in oscillating magnetic
field.

(d) [1 point] Suppose that we can change the spring constants of the springs attached to the boundaries
(from k to k1 and k2, respectively) without changing their natural lengths. Show that the equations of
motion are

ẍ1 + ω2
1x1 = ω2

cx2

ẍ2 + ω2
2x2 = ω2

cx1 , (2)

where ω2
1 = (k1 + κ)/m, ω2

2 = (k2 + κ)/m, and ω2
c = κ/m.

(e) [1 point] Since we assume that κ� k1, k2, the masses prefer to oscillate around their natural frequencies
rather than exchanging their energies. Let’s move to the rotating frame of the oscillators by letting

x1(t) = Re

{
Aeiω1t

√
ω1

}
x2(t) = Re

{
Beiω2t

√
ω2

}
, (3)

Prove that in rotating frame, and under the slow-varying amplitude assumption, the coupled equations
in part (d) become

i
∂

∂t

(
A
B

)
=

(
0 Ω

2 e
iδt

Ω
2 e
−iδt 0

)(
A
B

)
, (4)

where δ = ω2 − ω1 and Ω = ω2
c/
√
ω1ω2.
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(f) [1 point] Let’s move to another rotating frame by letting A = aei
δ
2 t and B = be−i

δ
2 t, chosen by killing

off the off-diagonal phases and getting

i
∂

∂t

(
a
b

)
=

1

2

(
δ Ω
Ω −δ

)(
a
b

)
, (5)

which is also the equation governing the evolution of a spin-1/2 spin under the Hamiltonian H =
δ
2σz + Ω

2 σx (representing a static field pointing along z-direction and a static field along the x-direction).

(g) [2 points] Solve the full time evolution of x1 and x2. Now, suppose one starts the oscillation in the
left most spring with ωc � ω1 � ω2 and slowly increases ω1 until ωc � ω2 � ω1. Which springs are
oscillating at the end? To make the thinking process easier, you can assume the springs system is now
the coupled pendulum and you can change the oscillation frequency of one pendulum by changing its
length.

Hint: you may find it useful denoting δ/
√
δ2 + Ω2 = cos θ.

Tin Nghia Nguyen - University of Colorado at Boulder
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